3.104 \(\int \frac{(a+a \sec (e+f x))^{5/2}}{\sqrt{c-c \sec (e+f x)}} \, dx\)

Optimal. Leaf size=152 \[ \frac{a^3 \tan (e+f x) \sec (e+f x)}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}+\frac{4 a^3 \tan (e+f x) \log (1-\sec (e+f x))}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}+\frac{a^3 \tan (e+f x) \log (\cos (e+f x))}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}} \]

[Out]

(a^3*Log[Cos[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) + (4*a^3*Log[1 - Se
c[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) + (a^3*Sec[e + f*x]*Tan[e + f*
x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.113735, antiderivative size = 152, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.067, Rules used = {3912, 72} \[ \frac{a^3 \tan (e+f x) \sec (e+f x)}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}+\frac{4 a^3 \tan (e+f x) \log (1-\sec (e+f x))}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}+\frac{a^3 \tan (e+f x) \log (\cos (e+f x))}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[e + f*x])^(5/2)/Sqrt[c - c*Sec[e + f*x]],x]

[Out]

(a^3*Log[Cos[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) + (4*a^3*Log[1 - Se
c[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) + (a^3*Sec[e + f*x]*Tan[e + f*
x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

Rule 3912

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[(a*c*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]), Subst[Int[((a + b*x)^(m - 1/2)*(c
 + d*x)^(n - 1/2))/x, x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && E
qQ[a^2 - b^2, 0]

Rule 72

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (e+f x))^{5/2}}{\sqrt{c-c \sec (e+f x)}} \, dx &=-\frac{(a c \tan (e+f x)) \operatorname{Subst}\left (\int \frac{(a+a x)^2}{x (c-c x)} \, dx,x,\sec (e+f x)\right )}{f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}\\ &=-\frac{(a c \tan (e+f x)) \operatorname{Subst}\left (\int \left (-\frac{a^2}{c}-\frac{4 a^2}{c (-1+x)}+\frac{a^2}{c x}\right ) \, dx,x,\sec (e+f x)\right )}{f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}\\ &=\frac{a^3 \log (\cos (e+f x)) \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}+\frac{4 a^3 \log (1-\sec (e+f x)) \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}+\frac{a^3 \sec (e+f x) \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 6.76663, size = 292, normalized size = 1.92 \[ \frac{\tan \left (\frac{e}{2}+\frac{f x}{2}\right ) \sec (e+f x) (a (\sec (e+f x)+1))^{5/2} \sqrt{(\cos (e+f x)+1) \sec (e+f x)}}{f (\sec (e+f x)+1)^{5/2} \sqrt{c-c \sec (e+f x)}}+\frac{\sqrt{2} e^{\frac{1}{2} i (e+f x)} \sqrt{\frac{\left (1+e^{i (e+f x)}\right )^2}{1+e^{2 i (e+f x)}}} \left (8 \log \left (1-e^{i (e+f x)}\right )-3 \log \left (1+e^{2 i (e+f x)}\right )-i f x\right ) \sin \left (\frac{e}{2}+\frac{f x}{2}\right ) \sqrt{\sec (e+f x)} (a (\sec (e+f x)+1))^{5/2}}{f \left (1+e^{i (e+f x)}\right ) \sqrt{\frac{e^{i (e+f x)}}{1+e^{2 i (e+f x)}}} (\sec (e+f x)+1)^{5/2} \sqrt{c-c \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[e + f*x])^(5/2)/Sqrt[c - c*Sec[e + f*x]],x]

[Out]

(Sqrt[2]*E^((I/2)*(e + f*x))*Sqrt[(1 + E^(I*(e + f*x)))^2/(1 + E^((2*I)*(e + f*x)))]*((-I)*f*x + 8*Log[1 - E^(
I*(e + f*x))] - 3*Log[1 + E^((2*I)*(e + f*x))])*Sqrt[Sec[e + f*x]]*(a*(1 + Sec[e + f*x]))^(5/2)*Sin[e/2 + (f*x
)/2])/((1 + E^(I*(e + f*x)))*Sqrt[E^(I*(e + f*x))/(1 + E^((2*I)*(e + f*x)))]*f*(1 + Sec[e + f*x])^(5/2)*Sqrt[c
 - c*Sec[e + f*x]]) + (Sec[e + f*x]*Sqrt[(1 + Cos[e + f*x])*Sec[e + f*x]]*(a*(1 + Sec[e + f*x]))^(5/2)*Tan[e/2
 + (f*x)/2])/(f*(1 + Sec[e + f*x])^(5/2)*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.319, size = 183, normalized size = 1.2 \begin{align*}{\frac{{a}^{2}}{f\sin \left ( fx+e \right ) c} \left ( 3\,\cos \left ( fx+e \right ) \ln \left ({\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +3\,\cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -8\,\cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +\cos \left ( fx+e \right ) \ln \left ( 2\, \left ( 1+\cos \left ( fx+e \right ) \right ) ^{-1} \right ) -\cos \left ( fx+e \right ) -1 \right ) \sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}}\sqrt{{\frac{c \left ( -1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(f*x+e))^(5/2)/(c-c*sec(f*x+e))^(1/2),x)

[Out]

1/f*a^2*(3*cos(f*x+e)*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+3*cos(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin
(f*x+e))-8*cos(f*x+e)*ln(-(-1+cos(f*x+e))/sin(f*x+e))+cos(f*x+e)*ln(2/(1+cos(f*x+e)))-cos(f*x+e)-1)*(1/cos(f*x
+e)*a*(1+cos(f*x+e)))^(1/2)*(c*(-1+cos(f*x+e))/cos(f*x+e))^(1/2)/sin(f*x+e)/c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(5/2)/(c-c*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (a^{2} \sec \left (f x + e\right )^{2} + 2 \, a^{2} \sec \left (f x + e\right ) + a^{2}\right )} \sqrt{a \sec \left (f x + e\right ) + a} \sqrt{-c \sec \left (f x + e\right ) + c}}{c \sec \left (f x + e\right ) - c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(5/2)/(c-c*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-(a^2*sec(f*x + e)^2 + 2*a^2*sec(f*x + e) + a^2)*sqrt(a*sec(f*x + e) + a)*sqrt(-c*sec(f*x + e) + c)/(
c*sec(f*x + e) - c), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))**(5/2)/(c-c*sec(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(5/2)/(c-c*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out